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The superiority of actuarial approaches over human judgment in 
classification is well documented, suggesting their utility in 
classifying artifact-laden segments of EEG data.  In studies of 
frontal alpha asymmetry, relevant scores are derived from mean 
alpha-band power across the EEG record.  Artifacts in the EEG 
record will bias such estimates, sometimes drastically.  An 
ongoing study of frontal alpha asymmetry has, to date, collected
over 100 hours of 64-channel EEG data.  The size of this 
dataset requires that the process of manually rejecting artifacts 
be distributed over a number of scorers.  Estimates of between-
rater agreement on duplicate files are typically high, suggesting 
that many artifacts are easily recognized and reliably rejected 
across the pool of scorers.  Despite this consistency, initial 
analyses suggest that occasional artifacts still remain, in some
cases severely biasing the overall estimate of asymmetry.  
Manual identification of alpha-band outliers (e.g. via scatter-
plots) is not practical, again due to the size of the dataset.  
Several algorithm-based methods to identify artifacts are 
discussed, as is the relative performance between methods with 
respect to identifying known artifacts.  These methods can in 
turn provide an actuarial data-driven set of criteria for artifact 
rejection.

The following presents two approaches to artifact detection: 
detection of bad channels within an EEG record, and detection 
of artifacts within otherwise good data.

Abstract and Overview

Subjects
104 paid undergraduate students (77 female)
19 met criteria for current Major Depressive Disorder 
(MDD), 41 met criteria for past MDD
Beck Depression Inventory scores ranged from 0 to 43 
(mean=10.7, median = 10)

EEG Procedure
EEG data were recorded on 4-6 separate occasions, with two 
8-minute resting periods on each occasion, comprised of eyes 
open and closed recordings in one of two orders 
(COOCOCCO, OCCOCOOC). 
Scalp EEG recorded from 64 channels (including mastoids), 
with an online reference located between Cz and CPz.  
Vertical and horizontal EOG were recorded using bipolar 
leads.  All data were low-pass filtered at 200Hz, and 
digitized at 1000Hz.
Data were initially reviewed for bad channels and artifacts by 
a number of different scores (blinks and most other ocular 
artifacts were not removed, as an automated rejection 
algorithm was to be applied at a later stage).

General Methods
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EEG data consisted of all data within each one-minute rest period, excluding segments rejected during the initial 
scoring.
Remaining raw EEG data (i.e. within each 1-minute rest period, excluding rejected segments) were digitally filtered 
(FIR band-pass, -3dB at 0.5 and 57Hz). This band was selected so that the derived metrics would be applicable to a 
variety of EEG studies (e.g. ERP and non-alpha band oscillations)
Raw EEG files were again assessed by a single rater (first author), to establish a “ground truth” regarding whether 
channels were bad.
Two metrics were derived from the raw EEG data:

For both metrics, cut-points were chosen such that both sensitivity and specificity were maximized, and 
sensitivity was greater than specificity.  Posterior probability of bad channel detection was calculated for separate 
and combined metrics

Bad Channel Detection
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Method

Results

The rationale for this metric was that activity at a good site should be highly correlated with neighboring sites. The Z metric 
was derived by fitting a regression between the EEG time series of the channel of interest and its four nearest neighbors.  
A Fisher z-transform was applied to the resulting correlation coefficient (r), then normalized with respect to that site across 
all records.

Z =

The rationale for this metric was that bad sites will show excessive deviations from baseline. The R metric is the root-
mean-square amplitude estimate of the filtered EEG data, again normalized by site across all records.

R Metric

R metric Z metric

Figure 1.  ROC Curves for Z and R metrics in identifying bad channels.  
“Ground Truth” is ratings made by first author.
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Figure 2.  Distribution of Z and R 
metrics ( X indicates a bad channel)

Table 1.  Posterior probabilities of bad 
channel detection, for separate and combined 
metrics (Z = Z metric > cut-score, R =metric 
> cut-score, B = bad channel).

Discussion
The overall probability of detecting bad channels is low despite
the reasonable sensitivities and specificities of the above metrics, 
largely due to the low base rate of bad channels
In contrast, the combined metrics perform well in determining 
whether a channel is acceptable.
Performance may be improved by using a “successive-hurdles”
approach, where additional metrics could be derived to 
discriminate good from bad channels in cases where the above 
metrics indicate the channel is bad.  As an example, a number of
the “false-alarm” channels show high EMG activity; as such, it 
may be useful to employ additional metrics to detect whether 
EMG increases overall amplitude, or decreases the correlation in
signal between adjacent sites.
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Method and Discussion
For all the metrics described below, complex FFT data was calculated for both the original signal and its derivative (via 
first-order difference between samples).
Data segmented into 2.048 sec epochs overlapping by 75%
Complex FFT from 0.1 to 30Hz derived for each epoch after application of hamming window to both the original and 
derivative signal.
Metrics evaluated for blink and step artifact examples, as well as a segment as posterior alpha burst.  The goal is to find 
metrics that are sensitive to artifacts but insensitive to large changes in actual EEG signal.

Development of epoch artifact detection metrics focused on finding those metrics that were robust with respect to 
differences between subjects (e.g. blink rates, global cortical activity) as well as between channels (e.g. variation in 
amplitude across sites due to the position of the online reference, differences in ocular activity).  The following 
describes several candidate metrics.

Blink Artifacts Step Artifacts Posterior Alpha
Epoch-removed mean power 

difference
For each epoch n, the difference 
between mean power across all 
epochs   and mean power 
with epoch removed                                 

Normalized power

Power in the original signal, with 
respect to median and inter-quartile 
power for all epochs within channel

Normal-Derivative Spectrum 
Correlation

Correlation between original and 
derivative spectrum amplitude

Original-Derivative Spectrum 
Euclidian Distance

Euclidian difference between original 
and derivative signal spectrum 
amplitude (taken as vectors)

Phase/Amplitude Chi-Square
Normal signal complex phase 
separated into 10 bins; chi-square 
evaluated over the observed 
summed amplitude for each bin, 
compared to summed amplitude 
across all frequencies

Figure 3.  Raw EEG with blinks, step artifacts, and posterior alpha (columns) 
superimposed on metric value (rows) for the corresponding epoch
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For the above examples, all of the metrics appear sensitive to blink artifacts, and several appear sensitive to the step artifacts.  
The Phase/Amplitude Chi-Square exhibits some specificity as well, in that the metric is relatively small for the non-artifactual
posterior alpha burst.
Overlapping epochs pose a challenge for developing detection algorithms, in that a relatively short artifact can “spread”
across multiple epochs, suggesting that other time-frequency transforms (e.g. wavelets) may perform better.


