Psychological Bulletin

1980, Vol. 88, No. 3, 580-587

'New Time-Series Statistic for Detecting Rhythmic Co-Occurrence
in the Frequency Domain: The Weighted Coherence
and Its Application to Psychophysiological Research

Stephen W. Porges
Umverslty of Illinois at Urbana-Champaign

Robert E. Bohrer

Department of Mathematics
University of Illinois at Urbana-Champaign

Michael N. Cheung, Fritz Drasgow, Philip M. McCabe, and Gideon Keren
University of Illinois at Urbana-Champaxgn

The relationships among physiological systems and between physiclogical and
behavioral systems have frequently been evaluated with traditional descriptive
statistics. These methods may not be sensitive to underlying rhythmic rela-
tionships. Although cross-spectral analysis provides a method for assessing
rhythmic co-occurrence, it is only capable of describing the covariation of two
systems at specific- frequencies. Since physiological and behavioral systems
tend not to be manifested at a constant frequency, a new statistic is described
that is capable of evaluating the shared rhythmicity of two systems across an

entire band of frequencies.

Psychophysiological research often describes
parallels between physiological and behavioral
response systems. Psychophysiological con-
structs such as response fractionation (Lacey,
1967) "and cordiac-somatic coupling (Obrist,
Webb, Sutterer, & Howard, 1970) have been
defined in terms of the statistical relationship
among physiological response systems. Even
research evaluating the ubiquitous construct
of arousal has been dependent on a statistical
assessment of the relationship among response
systems. Research assessing the validity of a
general arousal theory has usually consisted of
describing the central tendency (e.g., mean) or
variability (e.g., range, variance) of specific
physiological response systems and then corre-

lating these variables. Data resulting in high
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interresponse system correlations have beer}l
used to support a general arousal or activation

- theory, whereas low interresponse system cor—

relations have been used to crlthue the con:
struct of arousal. However, it is possible tha€
the descriptive statistics of mean and varlance
are not sensitive to all the underlying organ—
izational characteristics of the nervous system2
Specifically, mean and variance statistics are
insensitive to rhythmicity, and the correlations
among the descriptive statistics are insensitive
to rhythmic co-occurrence. Thus the conclu-
sions of earlier landmark studies may have been
a function of the statistical methodology
rather than of the underlying principles of:
neural and behavioral organization. %
This article describes a new time-series sta
tistic that may be used to assess the organi
tion of physiological and behavioral response;
systems. Potentially this technique may bg‘;
used to redefine constructs such as arousalf‘f
This article describes the modification of a clas
of time-series statistics : cross-spectral analysisJ
This modified statistic may be the approprlatg@’
method to describe the shared rhythmic vari?
ation between two physiological response sys
tems. The relationship between heart rate and
respiration will be used as a model system to:
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DETECTING RHYTHMIC CO-OCCURRENCE

illustrate the potential usefulness of the tech-
nology. These methods, however, may be ap-
plied to other behavioral or physiological
response systems.

Time Series: A Definition

Although most psychophysiological data are
presented in terms of mean levels within or
across subjects, the sequential pattern of a
physiological response for a specific subject
during a period of time may provide important
information. Time-series statistics provide
methods to describe these patterns. A set of
sequential observations, such as the amplitude
of respiration sampled every second or the time
intervals between sequential heart beats, con-
stitutes a time series. Mathematically, a time
series may be described as a string of random
variables that are sequentially indexed, for
example,

Xy Xigy, D, TP Xt

In this example, the index ! represents time.
There are two basic approaches that may be
used to describe and analyze a time series. The
series may be represented and analyzed in the
time domain or in the frequency domain. Time
domain representations plot data as a function
of time. Time domain methods of analysis are
based on autocorrelation and cross-correlation
measures. As their names imply, the techniques
are mathematical extensions of traditional cor-
relational techniques. An autocorrelation is the
correlation of one time series with a time-
shifted version of itself. If the time series is
periodic, the plot of the autocorrelations (the
autocorrelogram) at different time lags will be
periodic. Similarly, a cross-correlation is the
correlation of one time series with a time-
shifted version of a second time series. The
cross-correlation function provides-information
regarding the statistical dependence of one
wave form with another. If the two time series
are identical, the peak value of the cross-cor-
relation function will be unity at the lag that
makes the two series identical and less than
unity at all other lags. In most cases, since the
second series is not solely a time-shifted version
of first series, the peak value of the cross-cor-
relation will be less than unity.
Autocorrelation techniques are very effective
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Figure 1. Pure sine wave.

in detecting periodicities only when the scries
are characterized by a relatively pure sinusoid,
uncontaminated by other random influences.
Cross-correlation techniques lose their effec-
tiveness and sensitivity to assess the commonal-
ity between two series when the difference be-
tween series is more than a temporal displace-
ment. Anyone can recognize the single sine
wave in Figure 1; however, to recognize the
components of a mixture of sine waves in
Figure 2 may be difficult. In Figure 3, the four
sine waves that were summed in Figure 2 are
superimposed. o

If the variance associated with the signal of
interest represents only a small percentage of
the total variance of the series, then the suc-
cessful application of time domain techniques
will be limited to the experimenter’s ability to
filter the data by removing periodicities other
than the one of interest. This requires a priori

- knowledge of the underlying periodic structure

of the process, the basic reason for performing
the analysis in the first place and hence a priori
unknown to the experimenter.

Frequency domain techniques are those
based on the spectral density function that de-
scribes how the periodic variation in a time
series may be accounted for by cyclic compon-
ents at different frequencies. The procedure for
estimating the spectral densities at various fre-
quencies is called spectral analysis. For bivari- .
ate series, the .cross-spectrum measures the
covariances between two series at different
frequencies. Spectral technology decomposes
the variance of a time series into constituent
frequencies or periodicities. There is a mathe-
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Figure 2. Sum of four pure sine waves.

matical relationship between the time domain
correlation procedures and spectral analysis.
The spectral density function is the Fourier
transform of the autocovariance (unstandard-
ized autocorrelation) function, and the cross-
spectral density function is the Fourier trans-
form of the cross-covariance function. The
selection of time domain or frequency domain
analysis for the study of rhythmicity is a func-
tion of the characteristics of the data set. In
the study of many physiological processes and
response systems, frequency domain analysis
appears to be appropriate, since these systems
are not manifested in pure sinusoids.

Periodic Covariation : A Physiological
Example

A component of heart rate variability ap-
. pears to covary with respiratory activity and is
often referred to as respiratory-sinus arrhy-
thmia (RSA). This covariation is obvious to
the casual observer on inspection of the se-
quential measurements of both simultaneously
measured variables, as illustrated in Figures
4 and $. ‘

Physiologically, RSA is a naturally occurring
arrhythmia of the sinoatrial node that exhibits
a periodicity (rhythm) similar to respiration.
An increase in heart rate is observed during
inspiration; heart rate decreases on expiration.

Although the mechanisms underlying the
complex interaction resulting in RSA are un-
known and are the focus of ongoing cardiopul-
monary research, the mechanisms of specific
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components of RSA are understood. By care-
fully selecting the better understood compon-
ents, cross-spectral analysis may be used to
accurately describe the respiratory/heart rate
interaction.’ ‘ 4

During inspiration, the lungs expand and
stimulate stretch receptors that convey in-
formation to the brain stem. The stretch re-
ceptors are prepotent in signaling the brain
stem to inhibit (gate) the vagal efferents to the

- heart that cause an increase in heart rate (see

Lopes & Palmer, 1976). During exhalation, the
stretch receptors in the lungs no longer convey
information to the brain stem gating mech-
anism, and the vagal efferents influence the
heart by prolonging the time between successive
heart beats. Although heart rate activity is not
solely determined by the respiratory influence
on the vagus, time-series analyses may be con-
ducted to assess the covariation of heart rate
patterns and lung movements.

How can one assess the covariation of the
heart rate and respiratory activity, given that
there is a physiological basis for such an inter-
action? Research investigating this relation-
ship has often .been’dependent on traditional
descriptive statistics that have attempted to
relate heart rate variability to respiration rate
or amplitude. The research has been inter-
preted to support some level of interaction by
identifying a covariation among decreased
respiratory amplitude, increased respiratory
frequency, and decreased heart rate variability
(e.g., Cheung & Porges, 1977; Coles, 1972;
Lacey, 1967; Porges & Raskin, 1969). These
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Figure 3. The constituent periodicities of Figure 2. =
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analyses, however, are not sensitive to the de-

gree of periodic or temporal covariation. be-
tween the two systems; the data only report
“that the systems respond in parallel when
summed across subjects.

Spectral Analysis: A Method for Describing
Periodic Processes

Spectral analysis is the natural tool for an-
swering questions regarding periodic or rhyth-
mic processes. Respiration and heart rate are
inherently rhythmic. For example, the physi-
ological construct of a central respiratory drive
is periodic and is often described in terms of
specific frequencies. Spectral analysis is merely
a method of quantifying the periodicity and
partitioning the total variance of the series
into" components - associated with specific
rhythms. '

Although respiratory frequencies may be
easily identified by observing a polygraph rec-
ord, the frequency components of heart rate
activity are more difficult to identify. The
heart is driven and controlled by various neural,
mechanical, and biochemical factors. Hypo-
thetically, each factor may be associated with
a specific periodicity.

Compare the sinusoidal characteristics of the
temporal changes in respiration amplitude
. plotted in Figure 5 with the less periodic plot of

the time intervals between 'sequential heart.

beats in Figure 4. These figures are time do-
main representations of the two physiological
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Figure 4. Second-by-second heart period values (time
intervals between sequential heartbeats).
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Figure 5. Second-by-second measures of respiration
amplitude (changes in chest circumference).

processes, since the data are plotted as a func-
tion of time. Time domain representations are
often the sum of the various sinusoids. As a
general rule, with the exception of processes
that are manifested by relatively pure sinu-
soids (e.g., respiration), it is difficult or impos-
sible to identify rhythms by viewing a time
series in the time domain. By viewing the time
series of sequential heart periods in the fre-
quency domain, spectral analysis decomposes
the summed sinusoids into constituent fre-
quencies. .

The comparison of spectral analysis with
analysis of variance may be helpful in facilitat-
ing an understanding of spectral methodology.
Spectral analysis partitions the variance of a
time series in a way that is strictly analogous
to the partitioning of variance in the analysis
of variance. The spectral density function de-
composes the total mean squares (¢?) into
mean squares over the constituent frequency
bands, just as the analysis of variance decom-
poses the total mean squares into orthogonal
constituent mean squares, such as main effects,
interactions, and errors. N

Spectral analysis may be used to study
rhythmic activity of heart rate and respiration
by decomposing both series of sequential ob-
servations into constituent sinusoidal functions
of different frequencies. The' frequencies of in-
terest in the study of RSA are the frequencies
associated with the normal spontaneous res-
piratory activity. If the breathing were con-
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Figure 6. Spectral density function of the heart period
data graphed in Figure 4.

stant at a rate of 12 times a min, each breath
would take approximately 3 sec and would
have a frequency of .2 cvcles/sec (.2 Hz), since
one fifth of the breath would occur in each sec.

Although it is necessary to introduce spectral
concepts, this article does not discuss how the
spectral density function is estimated, prob-
lems of spectral window design, aliasing, filter-
ing, significance tests, or other related fre-
quency domain concepts. (For a discussion of
these points, see Bohrer & Porges’s, in press,
condensed overview, or Brillinger's, 1975,
in-depth mathematical treatment.) The spec-
tral density function is calculated to evaluate
the variances of the specific frequencies of the
decomposed heart rate and respiratory pat-
terns by vielding power density scores at each
different frequency. The power density is an
estimate of the variance attributed to a spe-
cific frequency. In Figures 6 and 7, the power
densities for each frequency of heart rate and
respiration are plotted. These analyses were
conducted on the data plotted in Figures 4 and
5. Note that both series exhibit a peak power
density estimate at the same frequency, repre-
senting the dominant or most characteristic
respiratory frequency.

To calculate the component of heart rate
variability associated with respiratory activ-
ity, the spectral densities for cach frequency
characteristic of respiratory activity are ac-
cumulated. This is mathematically justified,
since rhvthms at different frequencies are

S84

known to be uncorrelated (Brillinger, 1973).
In adults, the respiratory irequency band
would represent rates between approximately
8 and 25 breaths/min; in children, it would be
between 15 and 30 breaths/min.

The spectral density of the heart rate (H)
process at a specific frequency may be repre-
sented as fu (), whereas the spectral density of
the respiratory (R) process at a specific fre-
quency may be represented as fr(f). Spectral
analysis mayv provide methods to quantify
concepts such as respiratory stability. Respira-
tory stability could be assessed in terms of the
percentage of total variance of the respiration
series associated with a specific band of fre-
quencies. Even though the spectral decomposi-
tion of both respiration and heart rate processes
results in similar dominant frequencies, the
heart rate process exhibits other prominent
frequencies, independent of respiration, that
have been theoretically associated with physi-
ological processes such as temperature and
blood pressure fluctuations (Chess, Tam, &
Calaresu, 1975}

Cross-Spectral Analysis: A Method for
Describing Periodic Covariation

Cross-spectral analysis generates a coher-
ence function, a measure of the best linear as-
sociation of each observed rhythm in one vari-
able on the same rhythm in the second vari-
able. The coherence [p?(8)] as described in the
foliowing equation is the square of the correla-
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Figure 7. Spectral density function of the respiration
data graphed in Figure 5.



DETECTING RHYTHMIC CO-OCCURRENCE

tion between the components (sinusoids) of the
two processes at a specific frequency (6).

| fur(0) |2
Ju(8) /r(6)

The coherence at frequency 8 is the square of
the cross-spectral density fug (8) divided by the
product of spectral densities of each series at
frequency 6. Note the similarity of this equa-
tion with the calculation of a squared correla-
tion - coefficient; the cross-spectral density
parallels the squared cross-products and the
spectral densities parallel the variances. Con-
ceptually, the coherence may be thought of as
a time-series analogue of the omega squared
(Hays, 1963) or as the proportion of variance
accounted for by the influence of one series on
the other at each specific frequency. Figure 8
- is a plot of the coherence spectrum of heart

rate and respiration. ,
~ Since respiratory rhythms occur over a band
of frequencies, the calculation of a summary
statistic that describes the proportion of shared
variance of the two systems is complex. The
coherence function that describes the correla-
tion at each frequency must be modified to
summarize the covariation of heart rate and
respiration across the respiratory frequency
band. This modified coherence would enable
one number to describe the general relationship
or coupling between respiratory and heart rate
- rhythmicity. We note, as illustrated in Figure
8, that the coherence is not constant across all
frequencies and that in Figure 7 the heart pe-
- riod activity is not equally distributed in all
frequencies. If the spectral densities were equ-

6 =

ally distributed, an unweighted mean coherence -

~ (for all frequencies) would accurately describe

 the relationship. For any other situation, it is’

- necessary to calculate a weighted coherence,
- which provides an exact measurement of the
. proportion of variance of one series that is
shared between the two processes. The follow-
- ing equation defines a new function, the
- weighted coherence, C,! which is the propor-
 tion of total variance of the H process that is
shared with the R process within the frequency
~ band from 6, to 8. In our example, 6, to 6, in-
cludes the frequencies most representative of
- respiratory rhythms in adults; 6, is equivalent
to 8 cycles/minute (.125 Hz), and 6, is equiv-
alent to 25 cycles/minute (42 Hz).

585
1.00 -
80 -
w
(8]
Z 604
i
&
W s0-
o .
O 0.
'oo ']'I"I'!'lll“l’"'l“l‘f“‘
0 2.0

HERTZ

Figure 8. The coherence spectrum between the heart
period data and respiration data graphed in Figures

‘4and 5.

§:0%(0) fu(6)do

Cv = % 7a@)d8

It can be mathematically proven (see the
Appendix) that the C,, defined in the previous
formula, is the only weighting of the coher-

~ences that provides the exact proportion of X

explained by ¥ on the band 6; to 6,. Thus the
proportion of heart period activity shared with
respiration within the dominant respiratory
frequencies may be calculated. In our example,
the estimate of C, may be evaluated as de-
scribed in the following equation:

I T OF 0
o ufa®) -

It is possible to have similar spectra for both
processes during states in which the processes
are totally unrelated. The relationship between
the two spectral density functions and the co-
herence spectrum becomes clear if we describe
hypothetical examples. Suppose an individual
is exhibiting both rhythmic breathing and
rhythmic heart period activity. When spectral
analyses are performed on both series, the dom-

! The term weighted coherence is used by Galbraith
(1966) to assess the coupling of cortical responses
through various pairs of electrodes. The definition of
Galbraith’s weighted coherence C is different; instead
of weighting the coherence by the spectral density
estimate fg, it is weighted by the cross-amplitude den- -
sity estimate. Galbraith’s definition forfeits the inter-
pretation of sharéd variance described previously, ‘an
important property of Cy.
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inant frequency of both spectra are the same.
This can be evaluated by using significance
tests to assess whether a specific frequency
is accounting for more variance than would be
expected by chance (see. Bohrer & Porges, in
press). The identification that two series have
the same dominant frequency provides no hint
regarding the co-occurrence of the two pro-
cesses and therefore no information regarding
the coherence. The analogue of this situation in
descriptive statistics would be the correlation
between two series that have the same mean
and variance, since knowledge of the mean and

variance of two series does not provide informa-

tion regarding their correlation.

Physiological Interpretation of the Cross-
Spectral Analysis

The weighted coherence C, may provide a
quantitative estimate of stretch receptor influ-
ence on heart period activity. The brain stem
may mediate a stretch receptor input/vagal
output system along a continuum of efficiency
from total co-occurrence (stretch receptor
activity accounting for all heart period activity
in the frequency band 6, to 62), Co=1, to total
unrelatedness of the two processes, Cy, = 0.

The coherence between the heart period
process and the respiration process is depen-
(dent on processes occurring in the brain stem.
For example, if the information from the stretch
afferents is transformed in the brain stem by
adding a 'random time delay to this informa-
tion, it is possible that the output heart period
spectrum may have characteristics similar to
the input respiration spectrum (e.g., the same
dominant frequency), although the coherence
would be different than unity. However, if the
afferent input were transformed by a constant

time delay (uncontaminated by other random .

components), perhaps representing a constant
neural transmission time, the coherence would
be 1. Thus C. could reflect the general coupling
of these two processes and may manifest the
degree of disruption within the brain stem.

Discussion

This article describes a new statistic that is
capable of summarizing the proportion of
shared variance of two processes that, although
periodic, are manifested in an entire band of
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frequencies. In biological and behavioral sys-
tems, the variance of virtually all processes
when they are spectrally analyzed will be de-
composed over more than one frequency. In
fact only a pure sinusoid, a rare process in any
real-life system, will have its total variance as-
sociated with one frequency. In many biological
systems the multiple determinants produce
roughly periodic activity across a wide band of
frequencies. The weighted coherence statistic
Cw provides a mathematically justified proce-
dure to summarize the proportion of shared
variances between two systems over an entire
band of frequencies. The application of C, is
not limited to the assessment of the coupling
between respiration and heart period activity
but may be used to assess the proportion of
shared variance between any two processes
that fit the statistical assumptions for spectral
analysis. In preliminary work we have applied
these techniques to assess the relationship be-
tween other pairs of processes: heart period
and motor activity, heart period and blood
pressure. Potentially these methods could be
used to describe the covariation of two behavi-
oral systems (see Gottman, 1979) or the o
variation of a physiological and behavioral sys-
tem. Thus the development of the C, statistic
provides the methodology to reevaluate psy}
chophysiological constructs theoretically “dé-
pendent on the co-occurrence of more than oné’
response system. e

References

Bohrer, R. E., & Porges, S. W. The application of
time-series statistics to psychological research: An
introduction. In G. Keren (Ed.), Statistical and
methodological issues in behavioral sciences research.
Hillsdale, N.J.: Erlbaum, in press. . .

Brillinger, D. R. Time series: Data analysis and theory,
New York: Holt, Rinehart & Winston, 1975. %

Chess, G. F., Tam, M. K., & Calaresy, F. R. Influence;
of cardiac neural inputs on rhythmic variation™ of!
heart period in the cat. American Journal of Physig
ology, 1975, 228, 775-780. g

Cheung, M. N., & Porges, S. W. Respiratory influences
on cardiac responses during attention. Plysiological:
Psychology, 1977, 5, 53-57. B

Coles, M. G. H. Cardiac and respiratory activity during?
visual search: Journal of Experimental Psychology;;
1972, 96, 371-319. T

Galbraith, G. C. Cross-spectral coherence analysis q§

central ‘nervous system coupling patterns. Pracced,’,

ings of the Symposium on Biomedical Engineering,

1966, 1, 341-344. ConE




DETECTING RHYTHMIC CO-OCCURRENCE

- Gottman, J. M. Detecting cyclicity in social interaction.

. Psychological Bulletin, 1979, 86, 338-348.

< Hannan, E. J. Time series analysis. London: Methuen,

1960.

' Hays, W. L. Slatistics for psychologists. New York:
Holt, Rinehart & Winston, 1963.

Lacey, J. I. Somatic response patterning and stress:
Some revisions of activation theory. In M. H. Appley
& R. Trumbell (Eds.), Psychological stress: Issues in
research. New York: Appleton-Century-Crofts, 1967.

© Lopes, 0. U, & Palmer, J. F. Proposed respiratory

587

‘gating’ mechanism for cardiac slowing. Nature, 1976,
264, 454-456. i

Obrist, P. A., Webb, R. A,, Sutterer, J. R., & Howard,
J. L. Cardiac deceleration and reaction time: An
evaluation of two hypotheses. Psychophysiology,
1970, 6, 695-706.

- Pierce, D. R* measures in time series. Journal of the
American Slatistical Associaiion, 1979, 74, 901-910.

Porges, 5. W., & Raskin, D. C. Respiratory and heart
rate components of attention. Journal of Experimental
Psychology, 1969, 81, 497-503.

Appendix

Derivation of the Weighted Coherence

Here, the weighted -coherence, as discussed
in the text, is shown to be the natural repre-
sentation of the proportion of variance of a
time series X (£) shared by the time series ¥ (¢)
- on the frequency band (8’,8"'). We find the best
prediction of X {¢) on the band, as a function of
¥(¢), and show that this predictor explains an
amount of the X () variance on the band (¢,
- 6”) that is equal to 2% f,(8) p?(f) df or ex-
plains a proportion of that variance equal to
our deﬁnitjon of the weighted coherence,
namely, [ f2(8) p*(6) d8/[5 £.(6) db.

. This derivation requires the spectral déecom-
position theorem, as derived briefly and elo-
- quently in Hannan's (1960) Appendix. Denote
the complex- exponential function by exp(-)
‘and the conjugate of a complex number z by
- z*. The spectral decomposition represents X (¢)
= [ exp(i02) dZ.(0) and Y(t) = [T exp(ibt)
dZ,(9), where Z; and Z, have orthogonal in-
crements; that is, E[dZ.(0,) dZ.(8:)*]
= E[dZ,(61) dZ,(82)*] = E[dZ.(61) dZ,(8:)*]
= 0, if the 6, and 6; intervals == [0y, 61 + d6,]
and = [6;, ;- df;] do not overlap, where
EdZ.(01)|* = [§" £.(6) df and E|dZ,(6,) |2
= [t f,0)d0, and where Z(—6)) =
[(—=2Z)]* for Z = Z, or Z,. Thus if f,, de-
notes the Fourier transform of the cross-covari-
ance function of X and ¥, we have [§
exp (i) f2,(6) d6 = [5i+%° exp(i6s) E[dZ.(0)dZ,
- (®)*], and E[dZ.(0) dZ,0)] =0 foru, v = x
~or y. [Recall that the Z(f) are complex ran-
dom variables. ] .
We want to predict the part of X{¢) on the

0i+-a0;

frequency band (6’, 6”), that is, to predict
Xg(t) = [T K(0) exp(ibt) dZ.(8), where K (8)
=1 on= (6, §") and K@) = 0 elsewhere.
Consider predictors of the form P = [ P(f)
exp(it) dZ,(0), and minimize, by choice of
P, the "prediction variance,” E|Xg(t) — P|?
= E| [, (K@®) exp(@)[dZ.(0) — [.,(0)
ez, ©0)/f, )1} + {[K(0) f=,0)/f,(6) — P(6)]
dZy(8)} |2 Next, use the orthogonality of Z in-
crements to write this as the mean integrated
modulus square of the first term in { }, 4, plus
that of the second term in { }, B, plus the ex-
pected integrated cross-product of the terms in

LN . -
The spectral decomposition facts show that
this expected squared.integral is the double
sum over those squares that are cross-products

_of Riemann-Stieltjes subintervals containin

the major diagonal. We thus have 4 = 2 [4’
f=(8) [1 —p*(8)] d6 and C = 0, whereas B is
nonnegative. Since 4 does not involve P and
B can be minimized by using the (optimum)
predictor function P(8) = K (8)f., 8)/f,(8), the
amount of X variance not explained by the
best Y-based predictor P is exactly 4. Thus
the amount of X variance explained by ¥ on
(0,67 is 25 f.(8)[1 — p2(8)] db, so that the
proportion of the total X variance, 2f% f,(6)
df, is exactly the weighted coherence, as de-
fined in this article. S
Pierce (1979) defined a related but different
weighted coherence. : '
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