Methodology

Digital Filtering: Background and Tutorial for Psychophysicists

EDWIN W. COOK III
University of Alabama at Birmingham

AND GREGORY A. MILLER
University of Illinois at Urbana-Champaign

ABSTRACT

Digital filtering offers more to psychophysicists than is commonly appreciated. An introduction is offered here to foster the explicit design and use of digital filters. Because of considerable confusion in the literature about terminology important to both analog and digital filtering, basic concepts are reviewed and clarified. Because some time series concepts are fundamental to digital filtering, these are also presented. Examples of filters commonly used in psychophysiology are given, and procedures are presented for the design and use of one type of digital filter. Properties of some types of digital filters are described, and the relative advantages of simple analog and digital filters are discussed.

DESCRIPTORS: Filters, Fourier analysis, Time constant, Digital signal processing.

The processing of psychophysiological signals nearly always includes some type of filtering. Most often, this filtering is done by means of electronic circuits that are built into the recording amplifiers or electrically interposed between the amplifier and the recording device such as the analog-to-digital (A/D) converter of a laboratory computer. Such electronic (or "analog") filters may be contrasted with an alternative category of filter that is applied to the signal after it has been numerically recorded. These digital filters have advantages that have been discussed in the engineering literature, but these sources may not have been readily accessible to psychophysicists.

The purposes of the present report are to: a) discuss and clarify certain important points of confusion in the literature regarding analog and digital filtering; b) draw attention to digital filters and their characteristics; and c) describe methods for efficiently constructing, evaluating, and implementing one type of digital filter in the context of computerized processing of psychophysiological data. We will not attempt an extensive mathematical treatment of the topic of digital filters but will instead emphasize practical information that is likely to be of greater use to psychophysicists.

In a chapter on signal extraction techniques for event-related potential (ERP) research, Ruchkin (1988) includes an extensive overview of digital filtering methods for the advanced reader. Farwell, Martinerie, Bashore, and Rapp (in press) assume much of the background discussed in the present tutorial and present a number of illustrations of a slightly different type of digital filter than that discussed in detail here. These works provide valuable follow-up to the introductory material in the present paper.

The simplest and most common electronic filters used in psychophysiological recording are high-pass and low-pass, which selectively attenuate low-frequency and high-frequency components, respectively. Such filters may be used as building blocks to construct band-pass filters, which selectively attenuate frequency components above and below a range of interest. For example, a band-pass filter for EMG recording might "pass" frequencies in the 10-1000 Hz range. Another hybrid, the band-stop filter, selectively attenuates frequency components within a specified range. The most commonly used band-stop filters attenuate a narrow range of frequencies in the vicinity of power-line noise (50 or 60 Hz), and are generally referred to as notch filters. For purposes of clarity, the following discussion will be primarily restricted to simple high-pass and low-pass filters, although we will return to the others in the discussion of digital filter design.

The degree to which a particular filter will pass various frequencies is typically represented as its gain function, where gain is the ratio of output amplitude to input amplitude as a function of frequency (sometimes power is used instead of amplitude—see below). Figure 1 illustrates the gain function for a low-pass filter. The range of frequencies that a filter will pass without substantial attenuation is referred to as its pass band. The range of frequencies in which little energy is passed is referred to as the stop band. The range of frequencies in which gain is intermediate is referred to as the transition band, approximately 13-37 Hz in Figure 1. Whether analog or digital, more complex filters tend to have narrower transition bands, which may be required in situations where the signal of interest and the noise or artifact to be rejected contain near-ly adjacent frequency components.

The authors wish to thank Jean M. Anhalt, Lawrence A. Farwell, Gabriele Gratton, Blair D. Hicks, Stephen W. Porges, David L. Roth, and Daniel S. Ruchkin for comments on earlier drafts of this paper. Steve Porges and Evan Byrne provided coefficients for the moving polynomial filters. We also would like to thank Bruce C. Wheeler for consultation on the electrical engineering literature. Preparation of this paper was supported in part by National Institute of Mental Health grant MH39628. Address requests for reprints to: Edwin W. Cook III, Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294; or Gregory A. Miller, Department of Psychology, University of Illinois, 603 E. Daniel Street, Champaign, IL 61820.

May, 1992

Digital Filters

The wide variety of ways in which transition bands are characterized in the psychophysiology literature is one of the more confusing aspects of filtering. Typically, some specific frequency within the transition band is reported as the "cutoff" or "corner" frequency, \(f \). The rule for determining \(f \) varies across sources and even across polygraph manufacturers. The other feature of transition bands typically reported is the "roll-off" rate, usually expressed in dB per unit of change in frequency. This is unambiguous in the abstract but somewhat inconsistent in practice, because sources vary in their choice of unit of frequency—usually octave (a doubling or halving of frequency) or decade (a tenfold change in frequency). Thus, a 6dB/ octave filter has a much narrower transition band (steeper roll-off) than a 6dB/decade filter, though both could be described as having a "6dB roll-off."

The inconsistencies in definition of cutoff frequency are problematic and warrant extended discussion. In the electronic engineering literature (e.g., Ludeman, 1986; Malmstadt, Enke, & Crouch, 1974), \(f \) is defined fairly consistently as the half-power frequency—that frequency within the transition band where the gain (ratio of output power to input power) is \(\sqrt{2} \). In decibels, a gain of \(\sqrt{2} \) equates to \(10 \log_{10} (\sqrt{2}) \approx -3 \text{dB} \). Thus, \(f \) is often referred to as the frequency at which the gain is "3dB down." Every 3dB decrease is a further halving of the power.

Some standard sources in the psychophysiology literature also define \(f \) as the half-power frequency (e.g., Ruchkin & Glaser, 1978). However, some sources treat \(f \) as the half-amplitude frequency, which is not the half-power frequency. (Power and amplitude are related but not identical measures of the magnitude of a signal. The relationship between these measures is discussed in detail below.) For example, Douglas-Young (1981) defines the cutoff frequency as "that point on the response curve where the amplitude response has decreased to \(\frac{1}{2} \) of its original value" (p. 137). The manual for a widely used polygraph (Grass Model 12 Neurodata) also uses half-amplitude to define its cutoff frequencies (Grass Instrument Co., 1985). Thus, although reliance on the half-amplitude criterion is less standard, it is not uncommon. In fact, it will be quite useful in the design of digital filters by the method described below.

The confusion and inconsistency in the literature is abated by the numerical relationship of .707 and .5 (the latter being the square of the former) and the common treatment of power as related to the square of amplitude (power = voltage/resistance; resistance is implicitly set to 1.0—i.e., ignored—in most discussions of these issues). At the frequency at which gain in power is .5, gain in am-
plitude is $\sqrt{5} - 0.707$. This half-power frequency is the definition of f_c employed in the familiar equation for a simple resistor-capacitor circuit, where R (resistance in ohms) $\cdot C$ (capacitance in farads) $= TC$ (time constant in seconds). Thus, $TC = 1/(2\pi f_c) = 1.59/f_c$, or $f_c = 1.59/TC$. This choice of emphasis on gain in terms of output power versus output amplitude is essential for precisely communicating the characteristics of a filter. For a polya-graph with filter settings labeled on the basis of half-amplitude, using those settings in the TC $= 1.59/f_c$ equation will produce an incorrect value for the time constant.

There is considerable confusion among psychophysicists on this point, perhaps because of pragmatic but inconsistent nomenclature on polya-graphs. Thus, for example, on the Grass Model 12 the filter settings refer to the half-amplitude frequencies (Grass Instrument Co., 1985), not the half-power frequencies. In fact, Grass Instruments told us that they have never determined the time constants associated with the various filter settings on the Model 12 (Spurr, personal communication, December 15, 1988). The graph of gain functions associated with the half-amplitude filter settings for the 12A5 amplifiers in the Model 12 manual indicates that the "$0.17 Hz" setting has a half-power gain at approximately 0.17 Hz, which would mean a time constant of 1.59/0.17 = 9.45 s. In contrast, for the Grass Model 12 the frequency settings on the 6A5 amplifier refer to the point at which the amplitude gain is 8. Its "$3", "$1", and "$5" settings actually provide time constants of approximately 22 and 25 s, respectively, implying power-defined cutoff frequencies of 0.07 and 0.65 Hz.

Equipment from some other manufacturers appears to use the half-power nomenclature. Settings of "Hi Freq. Response" on the Beckman 411 amplifier refer to f_c, defined in terms of power. The Beckman 9853 Voltage/Pulse/Pressure coupler and the Nihon Kohden Neurofax polygraph have settings that are explicitly labeled in both "TC" and "Hz", with values indicating that the "Hz" settings refer to power-defined f_c (e.g., both devices have a setting labeled both TC = 1.0 and Hz = 16). Coulbourn labels its filters with the f_c only; their empirical tests indicate that the labels on their 875-01 Bioamplifier with Filters also refer to power-defined f_c.

The characteristic of a filter in terms of the dB roll-off in its transition band was noted above. Confusion similar to that for f_c can now be discussed. As an alternative to gain as a simple ratio of output to input typically ranging from 0.0-1.0, a better way to characterize the cutoff frequency of a filter is as the frequency that alters gain by a certain number of decibels (dB), with negative values meaning a gain less than one. Thus, dB, a function of the log of the ratio of output to input values, is also a source of some confusion, because it may be computed on the basis of amplitude or power values. Decibels are usually expressed in terms of amplitude, computed as $10 \log_{10}(V_{out}/V_{in})$, but this is equivalent to $10 \log_{10}(P_{out}/P_{in})$, with V = voltage and P = power. The −3dB frequency is the frequency at which gain is 0.707 amplitude = 0.5 power = f_c. Again, however, because polya-graph filter specifications are instead often expressed in terms of the −6dB frequency (e.g., Grass Model 12), which is the half-amplitude frequency, confusion can result when trying to describe a filter in terms of frequency and dB.

We believe that this confusion about the axes for specifying f_c and about the relationships among f_c, time constant, gain, dB, power, and amplitude is pervasive in the psychophysiology literature. Because half-power and half-amplitude standards both appear to be well established, we do not propose that only one be used. However, it is essential to state which standard was used when reporting f_c, and it is essential to exercise care in deriving time constant values from the f_c stated, particularly for polygraphs, coupler, or filtering device. Although these imperatives follow primarily from confusion in the specification of analog filters, they apply to digital filters equally well.

Digital Filters: Background

Having reviewed and clarified some general principles and issues in filtering, we now address digital filtering more specifically. The term "digital filter" may be applied to a wide range of techniques that have in common only the fact that they are mathematical procedures that are applied to discrete numeric representations of continuous waveforms to selectively attenuate certain frequencies.

Psychophysicists using a wide range of physiological measures frequently work with such representations, examples of which include the sampled voltage between two EMG electrodes or corrected ECG electrode and its reference, the circumference of the chest during respiration, and the serum concentration of corticosterone. Each of these parameters varies continuously over time and may be recorded numerically at equal intervals, yielding a time series of observations of the form:

$$X_n, X_{n+1}, X_{n+2}, X_{n+3}, \ldots, X_{n+k}$$

The subscript refers to the time at which the associated X is observed, such that t is the time at which recording began and k is the sampling period (the time between adjacent samples). Event series such as heart beats can be converted to time series with a constant sampling period (Cheung & Porges, 1977; Graham, 1978; Miller, 1986). A time series may be plotted to represent the original waveform, as illustrated in Figure 2. Several tests, including the Nyquist criterion (Cheung & Porges, 1977; Brandsma, 1976; Brininger, 1975; Gottman, 1981, and Jenkins and Watts (1968) provide detailed mathematical treatments of time series and their analysis. The following sections on aliasing and representation of time series in the frequency domain address two specific issues in time series analysis that are especially relevant to digital filtering of psychophysiological data.

Aliasing. In order for a time series to represent a continuous waveform adequately, the sampling rate (f_s, the inverse of the sampling period) must be at least twice the fastest frequency present in the original waveform. This requirement follows from the fact that only if samples are obtained at least twice per cycle can a discrete time series accurately represent the frequency of a sine wave. This axiom is referred to as Nyquist's rule, and one-half the sampling frequency is referred to as the Nyquist frequency. If the rule is violated, the resulting digitized waveform may contain low-frequency components not present in the original data. This phenomenon is known as aliasing. It is important to note that Nyquist's rule requires sampling at twice the fastest frequency present in the original waveform, which may be higher than the fastest frequency in which the investigator is interested.

Because of possible errors in estimating the highest frequencies in real-world data and possible noise introduced by amplifiers and A/D converters, it is commonly suggested (e.g., Attinger, Anne, & McDonald, 1966, Coats, Graben, Kramer, & Miller, 1986) that sample rate be as much as 5-10 times higher than the Nyquist rule suggests. On the other hand, when it is believed that the noise power introduced at high frequencies is minimal, a more convenient sample rate is typically used and the resulting aliased noise ignored. A second situation in which the Nyquist rule can sometimes be violated is when there is a single high-frequency noise source (e.g., power-line noise) and it is possible to set the sampling period to an exact multiple of the period of that noise source. By thus sampling the noise at the same phase of its cycle, every sampleable, periodic contribution of the noise to the sampled waveform are removed. However, DC distortion as large as 1/2 the amplitude of the noise may still be present. Considerations related to Nyquist's rule and avoidance of aliasing are important in selecting parameters for digital data acquisition and filtering. A more precise treatment of aliasing is given in Appendix A.

Representing waveforms in the frequency domain. A time series that indicates voltage or some other parameter as a function of time is said to be a representation "in the time domain." An alternative representation of the same information is based on the principle (Fourier's theorem) that any waveform that is stationary (i.e., from which long-term DC shifts have been removed and in which the underlying frequency components do not change over time) may be represented as the sum of sinusoidal waveforms, each of a different frequency and having an associated amplitude and phase angle. This principle is the basis of Fourier analysis, which yields an indication of the amplitudes and phases of the constituent sinusoids as a function of frequency. This representation of a signal is said to be "in the frequency domain." A direct Fourier transform converts a digitally represented signal from the time domain to the frequency domain; an inverse Fourier transform does the converse.

The requirement of stationarity is important for this equivalence, and real-world psychophysiological data will often violate it. Nevertheless, the interchangeability of time-domain and frequency-domain representations of a given waveform bears emphasis. Consider a set of sine waves, each characterized by a frequency, an amplitude, and a phase. Frequency and amplitude for a given sine wave are constant. At some arbitrary time, the different sine waves may be at different points in their cycles (see Figure 3, Panels a, b, and c). Summing across the set of sine waves produces a single composite waveform in which the constituents may be difficult to identify, depending on their frequencies, amplitudes, and phase angles (Figure 3, Panel d). One
Digital Filters: Classification and Implementation

It was noted earlier that a wide range of mathematical procedures applied to time series may be considered digital filters. If one simply requires that the procedure selectively attenuate certain frequencies, then in a general sense implicit digital filters are already widely used in psychophysiology. For example, the calculation of the mean of a time series may be construed as an implicit digital filter, specifically one that attenuates all frequencies except 0 Hz (DC). Alternatively, computation of the variance of the series removes the DC component while retaining (and combining) all other frequencies. Although these standard descriptive procedures may be construed as types of digital filters, we will restrict our presentation to those procedures that yield a time series (one from which certain frequencies have been removed) rather than a single value such as the mean.

In one broad classification of digital filters, each filtered point is defined as a weighted or unweighted average of some number of input data points. "Filtering" consists of replacing each input data value with the sum of the cross-products of the weights and the input data points, as follows:

$$ Y_i = \sum_{j} W_{ij} \cdot X_{ji} $$

(1)

where W is the series of 2j + 1 weights (subscripted \(-j \to j\)). X is the input time series, and Y is the filtered time series. The number of weights, the values of those weights, and the time-domain relationship (i.e., the lag) between the data value replaced and the data values used in the cross-multiplication determine the gain function of the filter. Note that although there are 2j + 1 weights, the weighting sequence is symmetric about an unpaired central weight \(W_0\) (i.e., \(W_0 = W_{-k}\)). The cross-multiplication and summing procedure is referred to as convolution.

An alternative approach to digital filtering defines each filtered point as a function of the current input point and one or more prior filtered points. The general form of such a filter is:

$$ Y_i = X_i + \sum_{ji} W_{ji} \cdot Y_{ji-1} $$

(2)

where X and Y are defined as above, and W is the series of weights applied to prior filtered points.

The distinction between these approaches is frequently referred to as the filter’s impulse response. Filters that define output points solely on the basis of input points are said to have finite impulse response (FIR), because the effect of a single abrupt input point (an "impulse") disappears after a finite amount of time; namely, after the last filtered point that includes the abrupt unfiltered point in its definition. In contrast, filters that define each filtered point in part based on prior filtered points have infinite impulse response (IIR), because the effect of a single abrupt point will propagate ad infinitum. “Nonrecursive” and “recursive” are synonymous adjectives describing digital filters with finite impulse response and infinite impulse response, respectively.

IIR digital filters represent something of a hybrid between analog and FIR digital filters and share characteristics of both. Their advantages and disadvantages will be discussed below, where analog and digital filters are compared. However, a thorough discussion of IIR filters is beyond the scope of the present paper (see Ackroyd, 1973, for such a discussion), and the following presentation will be restricted to the FIR variety unless otherwise specified.

FIR Filters in Psychophysiology

In the psychophysiology literature, a variety of FIR filters have been described, particularly for smoothing (i.e., removing high-frequency components from) time series. We consider several of these below, and then present a general approach to filter design and evaluation that is based on spectral analysis.

Smoothing of time series data often accomplished by redefining each point in the original time series as the simple average of itself and a symmetric number of additional points before and after it. This filter is frequently referred to as a moving-average filter, reflecting the fact that computation of the average is repeated to define each filtered point. Additionally, this type of filter may be referred to as a "boxcar" filter, reflecting the shape of the weights plotted as a function of lag relative to the output point. Moving-average filters vary only in the number of data points averaged together. What gain function this translates into is a function of the number of data points and the sample rate. Ruchkin and Glaser (1978; Glaser & Ruchkin, 1976; Ruchkin, 1988) discuss equal-weight filters in detail and provide an equation for their gain. Although that discussion targets digital signal processing for ERP research, it applies more generally to digital filtering of any psychophysiological data. A particular advantage of equal-weight moving-average filters is the rapidity with which each filtered point can be computed. In general for FIR filters with j weights, computation of each filtered point requires j multiplications and j - 1 additions. But if the weights are equal, one can instead do j - 1 additions and then a single division by j. The latter computations will always be faster. This speed consideration may be particularly important if the filter is to be implemented on-line or with computer hardware lacking in floating-point support.

A variation on the simple moving-average filter is one in which each filtered point is a differentially weighted average of the corresponding and adjacent input points. In perhaps the most common such filter, the weight series is [.25, .50, .25] and each filtered point \(Y_i\) is therefore \((.25 \cdot X_{i-1}) + (.5 \cdot X_i) + (.25 \cdot X_{i+1})\). Bloomfield (1976) refers to application of this filter as hanning, and Glaser and Ruchkin (1976) describe its use in psychophysiology. Although computationally not as fast as a boxcar filter with 3 weights, approximate division of integers by 2 or 4 is rapidly accomplished on a digital computer by shifting binary digits to the right 1 or 2 places, respectively, and therefore does not depend on floating-point arithmetic.

The application to psychophysiological data of a more complex moving-average filter with unequal weights is described by Porges (1985). The derivation of Porges's approach is based on polynomial regression of overlapping segments of the time series on a variable representing time (Kendall, 1976; Hamming, 1989). The filter output is the predicted value of the time series at the midpoint of each segment. Both increasing the width of the filter and limiting the order of the regression polynomial to a low degree reduce the extent to which predicted values can oscillate at high frequencies; the moving polynomial filter thus functions as a low-pass filter. Despite its basis in regression, redundant calculations permit moving-polynomial filters to be implemented as moving-average filters with unequal weights (Hamming, 1989; Kendall, 1976; Porges, 1985).

Porges and his collaborators (e.g., Linnemeyer & Porges, 1986; McCabe, Yongue, Ackles, & Porges, 1985; Yongue et al., 1982) have used cubic moving polynomial filters with 15–51 weights to estimate the vagal contribution to heart rate variability (i.e., vagal tone). When used for this purpose, the filtered time series is subtracted from the original time series, yielding a second filtered time series with the low frequencies rather than the high frequencies attenuated. This subtraction procedure can be applied after any of the above low-pass (smoothing) filters to effectively convert them to high-pass filters.

Compared to the simpler equal-weight and [.25, .50, .25] filters described above, complex FIR filters can require much more time for computation. Al-
though this may not be an issue if the filtering will be done off-line, depending on sample rate and available computational power, such filters can easily overwhelm typical laboratory minicomputers and microcomputers in on-line applications. However, even complex symmetric unequal-weight filters allow some speed-up, relative to a direct implementation of the definition: one can sum each pair of observations at equal distance from the midpoint and then multiply by the weight, cutting the number of multiplications in half. Though moving-average filters with both equal and unequal weights are frequently used in data reduction of time series, their frequency characteristics are not generally reported and may not be generally recognized. Using frequency-domain methods described in the next section and Appendix B, the gain function for moving-average filters having any set of symmetric weights may be computed.

In addition to the explicit filtering and smoothing applications described above, a wide range of other procedures common in psychophysiology can be understood within an FIR framework. To calculate the mean of N points, such as for determining baseline levels, one employs a set of N weights, each with value 1/N. As noted earlier, this filter attenuates all but 0 Hz (DC). As a noise-reduction strategy, occasionally one chooses to remove an erratic point and replace it with the average of its neighbors. Such a procedure can be considered the application of a filter consisting of the weights 0.5, 0.5 applied symmetrically around the errant point.

Particularly interesting are FIR filtering methods used in template-matching algorithms. The “template” can be seen simply as a set of weights with a particular configuration of values, and the weights may not be symmetric. The basis for selecting weights may differ greatly across applications, but in general it will reflect a specific notion the investigator has about the signal being sought. For example, if the template (the set of weights) is simply a 10-Hz sine wave, then cross-multiplication of that template with raw EEG will constitute an alpha band-pass filter. One might search EEG or EOG for blinks by establishing a filter template with weights that outline a blink. The Woody (1967) filter technique used for latency correction of event-related potentials uses as its template a portion of the pre-correction waveform for a given subject; i.e., the template is customized for each subject. A simpler, common variation on the Woody technique employs a half sine-wave cycle or a half triangular-wave cycle as the template. In all of these examples, one slides the template along the data, cross-multiplying, and notes the latency of maximum cross-product as the likely latency of the signal for which one is filtering. These examples represent additional ways in which implicit digital filters are already widely used in psychophysiology.

Design and Evaluation of Digital Filters in the Frequency Domain

All of the FIR filters described above involve cross-multiplying a time series with a symmetric weight series (which may itself be considered a special-purpose time series), yielding a filtered time series. As described above, a time series can be represented in the frequency domain rather than the time domain. Representation of the original time series and the weight series in the frequency domain (see Appendix A) permits insights that lead to a general approach to design and evaluation of digital filters. Specifically, the amplitude spectrum of a filter is equal to the amplitude spectrum of the original time series, multiplied frequency-by-frequency by the cosine component of a filter’s frequency response. The specific steps for constructing such filters have been described by Gold and Rader (1969; see also Ackroyd, 1973; Oppenheim & Schafer, 1975; Ruckhin, 1988), and software implementing the steps is available (e.g., Cook, 1981). Briefly, the technique involves four steps: First, the filter’s ideal gain function is specified. Second, the inverse Fourier transform is applied to the gain function to obtain the initial set of weights. Note that this is a simple transformation from the time domain to the frequency domain, as described above. The gain function in the former becomes the set of weights in the latter. Third, it is usually desirable to reduce the number of weights and to taper the weights in order to balance requirements related to transition bandwidth, computational limits, maximum filter width, and “ripple” (the degree to which the gain function varies around unity in the pass band and around zero in the stop band). Finally, the reduced filter is evaluated and the process repeated until an acceptable filter is obtained. These steps are described in detail in Appendix B. It is assumed that the investigator has already made decisions about type of filter (high-pass, low-pass, etc.) and half-amplitude frequency or frequencies.

A related approach to digital filtering is also based on frequency-domain representation. This alternative approach requires three steps: First, a direct Fourier transform is used to transform the original time series to the frequency domain. Second, those elements of the transform that correspond to frequencies to be eliminated are set to zero. Third, an inverse Fourier transform recreates the original time series, minus those time series for which the desired frequency was set to zero. Although this approach follows in a straightforward manner from the earlier discussion of frequency- and time-domain representations, it has some limitations. Specifically, it requires that the filtering be delayed long enough to acquire a time series large enough for spectral analysis. This may prevent difficulties if filtered data are required in real time, such as for biotelemetry. Secondly, if the signal is not stationary (i.e., does not have consistent mean and frequency components) over the epoch for which the Fourier transform is calculated, artificial high-frequency noise can result (Attinger et al., 1966). Finally, discontinuities can result between adjacent epochs filtered by this method.

The frequency-domain methods described briefly above and detailed in Appendix B also provide a means of computing the gain functions for many of the digital filters in common use in psychophysiology. Thus, if any symmetric weight series is transformed to the frequency domain, its gain function is given by its cosine components. A consideration of several examples of this generalization illustrates several important points. Gain functions for a simple moving-average moving-average filters (Figure 5) indicate several characteristics of such filters. First, they have considerable ripple, inverting the signal (gain < 0.0) by 20% or more in several frequency ranges. Second, such filters have zero gain at all frequencies that are multiples of f/2 and less than the Nyquist frequency, where f is the number of weights. Third, the half-amplitude cutoff frequency for an equal-weight filter is approximately 0.61/f (half-power cutoff frequencies are approximately 0.45/f, and the 0.45 is comparable to the .44 of Ruckhin and Glaser, 1978, and the .44 .47 of Ruckhin, 1988). This last point implies that j and f cannot be specified independently; because j must be an integer, available cutoff frequencies are fairly limited.

Using the filter width and cutoff frequency, equal-weight filters may be compared to unequal-weight filters constructed by the steps described above and in Appendix B. Figure 6 illustrates equal-weight filters computed by the present method have less ripple and considerably narrower transition bands (i.e., sharper roll-off).

Ruckhin (1988) provides a detailed explanation of the use of equal-weight, moving-average filters for smoothing. In addition, he suggests that such filters be applied twice; i.e., the original time series X is filtered to create Y, and then Y is filtered again to create Z. The above comparison suggests a reason why multiple passes may be preferred when using equal-weight smoothing. Applying an equal-weight filter multiple times is equivalent to applying a tapered weight filter for a single pass. In addition, the filter's width is effectively increased to 2j−1. As suggested in Appendix B, tapering the tails and increasing the width results in less ripple and a narrower transition band, exactly the result obtained by Ruckhin. For example, the weighting function for a fixed-weight filter of order 2, 2, 2, 2 results in a 1.0. 08, .12, 08. .04. An equal-weight filter is easier to comprehend and has practical advantages, as noted earlier. However, a single application of an unequal-weight filter provides the ability to customize the filter to achieve virtually any gain function that the physiological signal and experimental questions demand.

The present frequency-domain analysis of equal-weight filters provides a perspective on the ubiquitous problem of how long a baseline should be. It is clear that sensitivity to momentary fluctuations in a physiological process decreases as the length of the baseline increases. The present frequency-domain analysis describes that functional relationship mathematically. As noted above, a mean may be considered as an FIR filter with all weights equal to 1/N. If j points are averaged for a baseline, then the degree to which periodic activity of any frequency up to f/2 is reflected in that baseline can be computed using the methods described above and in Appendix B. In general, the shape of the relationship between number of points averaged for a baseline and sensitivity to periodic activity will be similar to that shown for selected values of j in Figure 5. Note that this analysis assumes that the physiological process is stable (stationary); that is, that the mean and frequency components do not change. For this reason it may be more useful in selecting durations for trial baselines than for ses- sion.

Finally, the frequency characteristics of moving polynomial filters can also be analyzed using frequency-domain methods. Figure 7 presents amplitude gain functions produced by the 21-weight cubic polynomial given by Perger (1985) and by a 21-weight filter computed by the frequency-domain method described briefly above and detailed in Appendix B. As shown, the frequency-domain method produces a filter with less ripple in the stop band, whereas the cubic polynomial filter has a nar-
lower transition band. Empirical tests suggest that these differences hold for polynomial filters up to at least 51 weights and fifth order. Choice of filter would thus depend in part on the relative importance of these two characteristics for a specific application. Although stop-band ripple for the basic moving polynomial filter can exceed 20% of original amplitude, Hamming (1989, pp. 47–50) notes that such ripple can be reduced by tapering the ends of the weight series. Nonlinear transformations of amplitude (e.g., power) will alter the effect of stop-band ripple. For example, by using the logarithm of power based on the residual from the moving polynomial filter, Porges attenuates effects of the stop-band ripple seen in the amplitude gain function. Another consideration in choosing between moving polynomial and frequency-domain filters is cutoff frequency. Quadratic and cubic polynomials have half-amplitude cutoff frequencies equal to approximately 1.3-\(f_s\), divided by the number of weights; the corresponding constant for quartic and quintic polynomials is 2. (As demonstrated by Kendall, 1976, moving polynomial filters of order 2k are equivalent to those of order 2k + 1.) Because \(f_s\) for any order of polynomial filter is a function of the filter width, there is a limitation on cutoff frequencies for such filters that is similar to that noted above for equal-weight filters.

Applications of Filters Designed in the Frequency Domain

Some of the issues in digital filter design are illustrated in a comparison of three EEG data sets. In a standard ERP study, one often wants to identify components that are roughly half-sinusoids and quantify their peak amplitudes and latencies. The phase distortion that a conventional analog filter would introduce might affect the latency component. On the other hand, setting the analog low-pass filter too high is problematic, because searching for the maximal value in a latency window risks capitalizing on small, chance fluctuations (noise) in the channel. Hence, it is useful to digitally smooth the data before scoring. One must estimate the frequency characteristics of the component(s) of interest and select a filter that has either a narrow transition band or \(f_s\) well above those frequencies. In data digitized at 125 Hz (Giese-Davis, Miller, & Knight, submitted), we expected the main ERP components of interest to be below 5 Hz, and we wished to remove alpha-band information (around 10 Hz) prior to scoring. A low-pass filter with a half-amplitude cutoff of 5 Hz would require a moderately narrow transition band, in order to pass 0 Hz and still remove alpha. A 31-weight filter was found to be adequate, with an amplitude gain of 96% at 0 Hz, 87% at 2 Hz, and 2% at 10 Hz. In contrast, to look at baseline EEG, a 31-weight filter constructed to pass only alpha (8–13 Hz half-amplitude cutoffs) was less effective (Etienne, Deldin, Giese-Davis, & Miller, 1990). The gain was only 61% at 10 Hz, then down to 25% at 6 and 16 Hz, and 2% at 3 and 18 Hz. The unfortunate attenuation at 10 Hz was essentially due to that frequency being relatively close to both of the cutoff frequencies; very narrow transition bands, requiring many weights, are necessary in such a case. A 61-weight filter would have provided a 90% gain at 10 Hz, with 6 and 15 Hz down to 7%. A 91-weight version would have been very time-consuming but very effective: 99% at 10 Hz, 1% at 6 and 15 Hz. A quite different case is the measurement of very slow phenomena underlying fast EEG activity. For contingent negative variation (CNV) data (Yee & Miller, 1988), we essentially employed a moving-average filter to remove conventional EEG: we averaged together the last 250 ms of EEG to score the CNV (sometimes also called an “area” measure). Such a case in which signal and noise are presumed to be far apart in frequency permits a wide transition band, and one can benefit from the computational speed of the moving-average method.

Comparison of Analog and Digital Filters

Having surveyed a variety of digital filters and presented a general method for designing and evaluating such filters, it is important to consider the relative advantages and disadvantages of analog and digital filters with respect to transition bandwidth, phase shift, consistency, stability, low-frequency application, cost, and availability.

Transition bandwidth. In general, a filter with a narrow transition band is preferable to one with a wide transition band. This is because the former will pass more (signal) on the pass-band side of the cutoff frequency and attenuate more (noise) on the stop-band side of the cutoff frequency. Thus, a narrower transition band allows the separation of closer frequencies. Commonly available analog filters often have transition bands of an octave (a range of frequencies over which the frequency is doubled) or more. Because the constraints on analog and digital filter design are quite different, it is often possible to construct a digital filter to have transition bands that approach zero width when this is not feasible with analog circuitry. Thus, digital filters provide the capability of removing artifact having frequency components that are very close to those of the signal of interest. Applications that demand narrow transition bands are those in which signals in one frequency band are to be passed while signals in closely adjacent frequency bands are to be attenuated (e.g., constructing filters to distinguish the conventional delta, theta, alpha, and beta frequencies among broadband EEG). In principle, it is easy to customize a digital filter to be particularly sensitive to any specified pattern of signal or noise. However, there is a trade-off between resolution in the frequency domain (narrowness of the transition band) and resolution in the time domain; more on this below.

Phase shift. A primary disadvantage of analog filters is the variable phase shift that they typically introduce. Standard resistor-capacitor (R-C) analog filters shift the input signal in time, and the amount of shift varies as a function of frequency. To appreciate this phase delay intuitively, consider a simple analog low-pass filter typically found in an amplifier. Essentially, higher-frequency components of the signal are removed by averaging over time. Each moment’s input voltage is blended with recent moments’ voltages. The filter thus has some memory (provided by the capacitor discharging through a resistor in the simplest R-C filter). A sudden (high-frequency) change to a new input level is not reflected significantly in the output until the new level has been sustained long enough to dominate the filter’s memory (i.e., until the capacitor charge increases significantly). This is the basis of the familiar rising and falling curve associated with a low-pass filter circuit’s time constant, as shown in Figure 8.

The amount of phase distortion is a function of frequency. Because bioelectric signals generally contain multiple frequency components, a traditional R-C analog filter will therefore distort not only the latency but also the shape of the input waveform. In contrast, FIR digital filters generally have both zero phase shift and thus do not distort the shape of the waveform, other than the desired attenuation of particular frequencies. No phase shift occurs if the FIR filter is constructed to have symmetrical weights (i.e., in defining output point \(i\), the same weight is applied to the input points at \(i-k\) and \(i+k\)).

Phase shift is of particular concern in psychophysiological research when the timing of an event (e.g., a peak of an ERP component) is the focus of investigation. Analog filters will generally increase the apparent latencies of such events relative to their actual time of occurrence, with the amount of this increase depending on the frequency components of the event and specific characteristics of the filter design. This bias in latency estimates can be eliminated by replacing the analog filter with an FIR digital filter.

![Figure 8](https://example.com/image8.png)
In contrast to FIR digital filters, the phase shift of IIR filters resembles that of analog filters. This phase shift may be a desirable feature when the researcher seeks to replicate and extend previous research conducted with analog filters (e.g., Cook, Hawk, Davis, & Stevenson, 1981). Consistency and stability. A further disadvantage of analog filters is the inherent variability among filters that have nominally identical gain and phase characteristics. Analog filters are constructed from physical components that are inexact in their specifications. Even a set of amplifiers with filters manufactured at the same time by the same manufacturer would not be expected to have exactly the same characteristics, and greater variability might be expected among filters and amplifiers manufactured at different times. There is potential for such differences to have systematic effects that may mislead the investigator who generally uses the same amplifier for the same measurement. The potential for error may be particularly great in the case of EEG recording, where a montage of placements is used, and the distribution of a signal across the scalp is of special interest. A related issue is that of consistency across time. Many electronic components are temperature sensitive, and may therefore change their electrical characteristics slightly as they, or the devices in which they are installed warm up.

In contrast, as mathematical operations, digital filters (including IIR filters) may be applied with complete consistency at different times, or across multiple recording channels. They do not need to be adjusted or recalibrated to maintain their specifications. Thus, digital filters eliminate the problems that inconsistency and instability could create.

Low-frequency application. Although most filters required in psychophysiological research have cut-off frequencies in the .1 Hz to 1 kHz range, this is not universally true. For example, several ranges of frequencies below .1 Hz are discriminated in biochemical potentials recorded from the abdomen (e.g., in electrogastrography). Design of stable analog filters with narrow transition bands is particularly difficult in this range, and for this reason digital filtering methods are now common in this research area.

Practical considerations. The primary advantages of analog filters are practical. Analog filters are an integral part of most physiological recording amplifiers in common use. In their most basic form, they are extremely inexpensive. Analog filtering may be readily applied as the data are recorded, prior to A/D conversion, without subsequent computation. Furthermore, if analog filtering is used to eliminate high-frequency components in the signal, the minimum frequency for A/D conversion is reduced (under the Nyquist rule). Thus, where A/D conversion cannot be accomplished at least twice the fastest frequency in the original signal, there is usually no alternative to the use of an analog filter. (Analog filters used to eliminate frequencies that would violate the Nyquist rule are known as anti-aliasing filters.) Furthermore, current recording hardware permits the analog filter selection to be made easily, whereas software for setting and implementing digital filters has not been so readily available (though see Cook, 1981; Digital Signal Processing Committee, 1979; Farwell et al., in press).

Despite the above considerations, digital filters may be more practical in certain circumstances. Most bioelectric recording devices provide a limited number of settings for the cutoff frequencies of the analog filters. Where a required cutoff frequency is not available, the investigator may choose to construct a custom analog (hardware) or digital (software) filter. As the level of software sophistication among psychophysicologists increases, the digital solution becomes more tractable. Moreover, digital filters may be programmed to operate in real time, during data collection (Cook, Atkinson, & Lang, 1987; Rockstroh, Elbert, Birbater, & Lutzenerger, 1982). If low-pass filtering is chosen as low-cut, the frequency at which the data must be stored is reduced from twice the fastest frequency in the original signal to twice the upper limit of the transition band of the filter. This frequency may be less than that required if the filtering were done with analog circuitry, thus reducing data storage needs.

Summary and Conclusions: A Decision Tree for Filter Selection

To summarize the points made regarding digital and analog filters, we suggest the following decision tree for filter selection. To select a filtering strategy, we suggest that the investigator consider the following questions:

1. Does the raw signal have faster components than 1/2 f s?
 Y: Is there a single high-frequency noise source (e.g., power-line noise) AND can the sampling period be set to an exact multiple of the period of that noise source AND is DC distortion as large as 1/2 the amplitude of the noise tolerable?
 Y: Continue with Question 2.
 N: Increase sampling frequency OR use an analog anti-aliasing filter sufficient to remedy this problem. Continue with Question 2.
 N: Continue with Question 2.

2. Is there an analog filter available with acceptable cutoff frequencies, transition bandwidth, phase shift, consistency, and stability?
 Y: Use an analog or a digital filter. If comparisons among multiple channels are to be made, a digital filter is preferred.

3. Is phase shift acceptable?
 Y: Consider an IIR filter (cf. Ackroyd, 1973), but continue with Question 4 to evaluate IIR possibilities.

4. Does an equal-weight filter have acceptable cutoff frequency, transition bandwidth, and ripple specifications?
 Y: Use an equal-weight filter.

5. Is a cutoff frequency of 1/f, and a wide transition band acceptable?
 Y: Consider the [.25, .50, 25] filter.
 N: If this simple unequal-weight filter is unacceptable, the choices become more complex. The frequency-domain method described in Appendix B provides a general related basis for designing complex unequal-weight filters to meet a variety of specifications of pass band, transition band, and ripple. The reader might also want to consult the engineering literature for other approaches to digital filter design (e.g., Digital Signal Processing Committee, 1979).

REFERENCES

Other requirements of replication might lead an investigator to choose one type of filter (e.g., Porges's 1985 moving polynomials) over other similar filters. Practical issues, particularly computation time when the filter is to be implemented on-line, will also constrain the choice of filters.

Thus, because digital filters have very different advantages and disadvantages from analog filters, the former may be helpful when the latter are problematic. Besides clearing up some confusion in general terminology for analog and digital filters, we hope that this presentation makes digital filter technology more accessible to psychophysicologists.

May, 1992

Digital Filters

1. Understanding the equations depends primarily on analysis of the h2×n expression for which the sine and cosine functions are evaluated. Because t ranges from 0 to 1/n, the value of the 1/n portion of this expression is 0 (precisely, from 0 to (n-1)/n). The constant 2πa range that scales to range from 0 to approximately 2π, over which the sine and cosine functions make one complete cycle. The multiplication of this range by b determines the number of complete cycles represented by the expression cos(h2×π/n) and sin(h2×π/n) when evaluated for t = 0 to 1/n. The cosine and sine functions differ only in phase, by π/2 radians (90 degrees).

2. Given the preceding logic, different integer values of b correspond to different numbers of complete sinusoidal cycles within the total time (T) represented by the time series. For example, if data are sampled for 4 seconds (T = 4 s), h = 1 corresponds to 25 Hz (1 cycle in 4 s), h = 2 corresponds to 5 Hz (2 cycles in 4 s), and so forth. Because h is always an integer, the resolution of frequencies for which A_h and B_h are evaluated is 1/T. That is, in the T = 4 s example, each successive value produced by the direct Fourier transform corresponds to a frequency 1/T = 25 Hz faster than the previous value. It is noteworthy that this frequency-domain resolution of the Fourier analysis is determined not by the sampling rate but by the total time represented by the time series (T).

The frequencies corresponding to the values of h are sometimes referred to as harmonics, referring to the fact that each frequency corresponds to one complete cycle within the total time represented by the time series than the preceding frequency. The nth-order harmonic corresponds to the frequency for which each complete cycle is represented by only two points. The nth-order harmonic has frequency (n/2)/T = 5. (n/T) = 5 · T, the Nyquist frequency. This limit on the highest frequency is the basis for the Nyquist rule, which requires a minimum of two sample points within the period corresponding to one cycle at the highest frequency in the data. Note that, in contrast to the resolution (1/T) of the spectrum, the maximum frequency must be half the sampling frequency and is independent of the amount of time represented by the time series. For example, if 480 samples were obtained in 4 s (120 Hz), then the highest harmonic (n/2 = 480/2) would be 240 cycles. When divided by 4 s, this yields 60 Hz = half the sample rate = Nyquist frequency. If only 2 s of data had been obtained at 120 Hz sampling (i.e., 240 samples), the highest harmonic would be 240/2 = 120 cycles in 2 s, still 60 Hz.

3. B_h is always zero for h = 0 and h = n/2. For h = 0, this true because the expression h2×π/n reduces to 0 and sin(0) = 0. For h = n/2, h2×π/n reduces to π, and sin(π) = 0 for all integer values of n. Thus, there are n/2 + 1 values of A but only n/2 - 1 values of B that may be nonzero for the direct Fourier transform of a time series of length n.

4. The balance of the equations for A_h and B_h involves summing the cross-products of the trigonometric function and the sampled data X across time, and dividing by n. Each resulting averaged cross-product will be large to the extent that periodicities in the data match the particular frequency involved in the trigonometric function. Both sine and cosine functions are employed in the calculations. This is because, for any given frequency, sine and cosine functions are uncorrelated due to their 90 degree phase difference. This orthogonality allows the two functions, in combination, to represent all of the variance of a sinusoidal function. That is, if there is activity at that frequency in the data, it will necessarily correlate (i.e., produce a nonzero average cross-product) with at least one of the two functions.

5. One way in which the Fourier coefficients may be conceptualized is in terms of their relationship to the amplitudes and phases of the constituent sinusoids that contribute to the time series. Thus, Equation A.3 may be rewritten as Equation A.4:

\[X_n = A_0 + \sum_{k=1}^{n/2} \left(A_k \cdot \cos(k \cdot \pi \cdot n) + B_k \cdot \sin(k \cdot \pi \cdot n) \right) + A_{n/2} \cdot \cos(\pi) \]

The amplitude of the sinusoidal component of X is calculated as follows:

\[X_n = A_0 + \sum_{k=1}^{n/2} \left(A_k \cdot \cos(k \cdot \pi \cdot n) + B_k \cdot \sin(k \cdot \pi \cdot n) \right) + A_{n/2} \cdot \cos(\pi) \]

where h = 1, 2, 3, ..., n/2-1; and

\[X_n = \sqrt{A_h^2 + B_h^2} \]

where h = 0, n/2

Thus, the amplitudes of the constituent sinusoids of a time series are represented by the combined magnitudes of A_h and B_h, whereas the phases of the sinusoids are represented by the signs and relative magnitudes of A_h and B_h. When amplitude is graphed as a function of frequency the result is referred to as the amplitude spectrum (e.g., Figure 4, Panel a). Phase is based on a cosine function and therefore increases from 0 to 180 degrees (0 to π radians) as the function descends from its peak to its trough. To reflect this point of discontinuity, the phase then increases from -180 degrees (-π radians) to 0 degrees for progressively more positive values on the ascending limb of the function. The phase of a particular harmonic depends on whether the beginning of the time series falls on the constituent sinusoid at that harmonic. Thus, phase will be positive if the data begin on the ascending aspect of the sinusoid and negative if the data begin on the descending aspect.

Appendix A

Observations on Fourier Analysis

\[B_n = \frac{1}{n} \sum_{i=0}^{n/2} X_i \cdot \sin(h2\pi/n) \]

The values A_0 and B_0 are sometimes known as Fourier coefficients. (All published formulas that we encountered for the Fourier coefficients include summed cross-products of the time series with the trigonometric functions. Precise definitions vary across reference sources with regard to whether this sum is left unchanged, multiplied by 1/n, or multiplied by 2/n; in whether h extends from 0 to n/2 or from 0 to n-1 (in which case values from n/2+1 to n-1 are the mirror image of those from 1 to n/2); and in whether t extends from 0 to n-1 or from n/2 to n-1.) The reverse Fourier transform uses these coefficients to reconstruct the original time series by the following equation:

\[X_n = A_0 + \sum_{k=1}^{n/2} \left(A_k \cdot \cos(k \cdot \pi \cdot n) + B_k \cdot \sin(k \cdot \pi \cdot n) \right) + A_{n/2} \cdot \cos(\pi) \]

To calculate the direct Fourier transform of time series X of even length n (X_0, X_1, X_2, ..., X_n), two expressions are evaluated for all integers h from 0 to n/2:

\[A_h = \frac{1}{n} \sum_{i=0}^{n/2} X_i \cdot \cos(h2\pi/n) \]

The following points regarding the direct and inverse Fourier transforms are significant for the present discussion:
When phase is graphed as a function of h (the harmonic number), it is referred to as a phase spectrum (e.g., Figure 4, Panel b).

In the discussion of filtering, we made reference to the distinction between amplitude and power. Frequently, sizes of the constituent sinusoids of a time series are expressed in terms of power:

$$\text{Power}_s = 2 \cdot \left(A_s^2 + B_s^2 \right)$$

where $h = 1, 2, 3, \ldots, n/2-1$; and

$$\text{Power}_A = (A_1^2 + B_1^2)$$

where $h = 0, n/2$ (A.7)

The graph of power as a function of frequency is referred to as the power spectrum.

One interpretation of power is contribution to the variance of the time series. When power values are summed across all frequencies greater than 0 Hz (DC), the result is the total variance; when power corresponding to DC is included in this sum, the result is the mean square. Thus, one way to construct Fourier analysis is as the partialing of variance in a time series among constituent frequencies.

7. We have found other statistical equivalences of A_0 and B_0 helpful in understanding the Fourier transform. For example, because $\cos(0:2\pi t/n) = -\cos(0) = 1$, $A_0 = 1/n \cdot 2 \cdot (X_1 \cdot X_2) = 1$ is the mean of the time series (i.e., the net DC level). If the mean is subtracted from the time series prior to transforming $(A_0 \cdot B_0 = 1, 2, 3, \ldots n/2)$ and $B_0 = 1, 2, 3, \ldots n/2-1$ are the sample covariances of time series X with cosine and sine functions having h complete cycles within the total time period represented by the time series.

A multiple regression approach to FTT, which elaborates this statistical framework within which the Fourier coefficients may be understood. Consider a set of $n/2$ sinusoidal time series k, each of length n, formed by calculating the cosine of $\frac{2\pi k}{n}$, $t = 1, 2, \ldots, n-1$. These time series differ only by the value of h ($h = 1, 2, 3, \ldots, n/2$) so that each completes exactly h cycles within the time series. A second set of $n/2$ time series s resembles k, except that it is formed by calculating the sine of $\frac{2\pi k}{n}$. Then A_0, B_0, and C_0 calculated by the direct Fourier transform will satisfy the following regression-style equation:

$$X_0 = A_0 + \sum_{k=1}^{n/2} \left(2 \cdot A_k \cdot \cos(k \cdot \Delta t) + B_k \cdot \sin(k \cdot \Delta t) \right) + A_{n/2} \cdot \cos(\frac{n}{2} \cdot \Delta t)$$

(A.8)

In Equation A.8, A_0, A_k, and B_0, B_k function as regression coefficients for frequencies from 1 to $n/2-1$, and A_0, A_k, and B_0, B_k function as the regression coefficient for the $n/2$-th frequency. Note that there are $n/2+1$ regression coefficients for cosine predictors and $n/2-1$ coefficients for sine predictors, or n total coefficients. As a regression, inclusion of n

flection across multiples of f_0 ultimately leads to an aliased signal at 0 Hz. In other words, "catching" the fast noise sine wave at a consistent level in its cycle will affect the level ($= DC = 0$ Hz amplitude) of the samples.

9. Fourier transform computations such as those required for the construction of digital filters are commonly performed using computer subroutines that implement the Fast Fourier Transform (FFT) algorithm. Fortunately, many software packages (e.g., Marple, 1987; Robinson, 1983) this algorithm substantially reduces computation time when the number of points in the time series (or related frequency-domain representation) is large, although it typically requires the time series length to be an integer power of 2 (e.g., 32, 128, or 1024 points). Some less restrictive forms of the FFT algorithm are surveyed by Brigham (1974). Regardless of the length of the series, the direct and inverse Fourier transforms may be calculated by Equations A.1-A.3. As will be seen in the next section, restrictions imposed by the FFT algorithm do not restrict the digital filters that may be constructed.

Appendix B

Finite Impulse Response Filter Design Using the Frequency-Domain Method

The method described here requires direct and inverse Fourier transformations, and for this reason the lengths of the time- and frequency-domain computations must be determined. The time-domain array will hold the filter weights, whereas the frequency-domain array will hold the function. The lengths of these arrays are dependent: if the time-domain array has length m, the frequency-domain array will have length $m/2 + 1$ (must be even). The precise value of m is not critical, although three constraints should be considered. First, the time-domain scratch array will ultimately contain the filter weights, and therefore m must be greater than the maximum filter width that will be considered. Second, because at several stages in the process the frequency-domain scratch array will contain the gain function of the filter, it should be large enough to provide adequate frequency resolution for graphing this function. That resolution will be $1/m$. Finally, in some FFT algorithms, m may be required to be an integer power of 2. Ackroyd (1973) suggests the following rule-of-thumb: if the transition band must ultimately be limited to a width of v Hz, set m to between $5/v$ and $10/v$. We have found that a computation array of length 256 is more than adequate for most purposes.

Step 1. Specification of the ideal gain function.

The ideal high-pass or low-pass filter passes all frequency components with unity gain on one side of the cutoff frequency and completely attenuates all frequency components on the other side of the cutoff frequency. That is, the gain function is discontinuous between zero and one at the cutoff frequency, and the transition band has zero width.

To construct the digital filter, we use the time-series concept introduced in the text of the article and in Appendix A. We begin with an ideal gain function specified in the frequency domain as array G of $m/2 + 1$. Each element of this array corresponds to a harmonic frequency that completes cycles within m times the sampling rate. Thus, the frequency corresponding to G_0 will be $h/(m/2)$ for $h = 0, 1, 2, \ldots, m/2$. To represent the ideal gain function, G_0 is set to 1.0 if $(h/\pi f_0)$ falls in the pass band or 0.0 if $(h/\pi f_0)$ falls in the stop band. If $(h/\pi f_0) = 1$, then G_0 is set to 0.5.

Band-pass and band-stop filters are specified in the same manner described above for high-pass and low-pass filters. The only difference is that the ideal gain function will have multiple transition bands, and therefore there will be more than one range of f and/or 0's within G. Step 2. Calculating the initial weights. The inverse Fourier transform (Equation A.3) is used to obtain the array of initial weights in the time domain (W) from the ideal gain function in the frequency domain (G). In applying the inverse transform, G serves as the cosine component (i.e., Array A), and B serves as the sine component (Array B) to zero, we ensure that the filter will have zero phase shift (see Equation A.6). Thus, the equation for each of the m weights becomes:

$$W = G_0 + \sum_{k=1}^{m/2} \left(G_k \cdot \cos(2\pi k h/m) \right) + G_{m/2} \cdot \cos(\pi h/m)$$

(B.1)

which is evaluated for $t = 0$ to m. In order for Equation 1 (in the text of the article) to apply and the filter to have zero phase shift, W_0 is considered the central weight and W_0 is multiplied by X_0, to compute Y_1 to Y_m. The last $m/2 - 1$ weights correspond to negative frequencies of f; that is, $f = m/2 - 1, m/2 - 2, m/2 - 3, \ldots, m - 1$ in Equation B.1 corresponds to $i = -m/2 - 1, -m/2 - 2, -m/2 - 3, \ldots, -1$, respectively, in Equation 1. Note that the weight series is symmetric; there is a single unpaired central weight W_0 and W_0, where $i = 1, 2, \ldots, m/2 - 1$. At this point a digital filter with $m - 1$ weights has been obtained. ($W_{m/2}$ is excluded because it is unpaired and would therefore result in phase shift.) Its gain function is approximately (due to exclusion of $W_{m/2}$) the ideal gain function that was originally specified in Step 1, multiplied by m. Scaling can be corrected by simply dividing all elements of W by m, after which the filter weights are ready for use (i.e., application as in Equation 1). However, additional manipulation and testing of the filter is typically desirable, as detailed below.

Step 3. Windowing the weights to obtain the final form of the filter. Filters with fewer than $m - 1$ weights may subsequently be calculated by applying a "window" to the weights obtained in Step 2. The windowing process will truncate and may additionally modify the weights that remain within the truncated series. Any window that is applied will change the gain function of the filter.
erally reducing its similarity to the ideal gain function described above.

The principal reason to apply a window is to reduce the filter from its initial width of m−1 weights. Practical considerations may dictate that the filter width be reduced below a certain length. For example, if the filter is to be applied on-line or if computing time is otherwise limited, then the filter width may be limited by constraints on computation time. Another constraint is that the data collected near the endpoints of the time series (Ruchkin, 1988; "loss in the sense that the filter cannot be applied to those points"). In some cases, particularly if the data are collected before the filter is designed, there may be a maximum tolerable loss. Several options for handling the ends of the time series are detailed at the end of this appendix. However, if filtering is anticipated prior to data collection, then in most cases sufficient data may be recorded beyond the time period of interest. A final consideration is that promotion of reducing filter width is that of temporal resolution. The wider the filter, the greater the loss of information about particular events occurred (e.g., the onset of a burst of a particular frequency). That is, precision in the time domain decreases in that more input points contribute to each filtered point.

In filtering in width by simply setting an equal number of weights at each end to zero increases the width of the transition band and introduces ripple in the pass and stop bands. The amount of ripple may be reduced by tapering the ends of the truncated weight sequence. Two methods of function tapering were investigated by Ackroyd (1973). For the Hamming taper, the remaining weights are multiplied by 0.54 + 0.46 · cos (πp).

For the Blackman window, remaining weights are multiplied by 0.42 + 0.53 · cos (πp) + 0.08 · cos (2πp).

In these equations, p is the distance from the center of the weighting function to the weight being windowed, expressed as a fraction of the distance from the center of the weighting function to the first weight beyond the outermost weight to be retained (i.e., p = i/(i+1), with i defined as in Equation 1). Generally, leaving the truncated weights unaltered produces the narrowest transition band but with the maximum amount of ripple, whereas the Blackman window provides the least ripple at the expense of widening the transition band. Moderate ripple and transition bandwidth are obtained with the Hamming window. Note that truncating and tapering must be applied separately to both symmetrical halves of the weight sequence.

Step 4. Calculating the gain function of the window filter. The gain function (in the frequency domain) for the weights in the windowed filter (in the time domain) may be obtained by calculating the discrete Fourier transform of the weights (see Equations A.1 and A.2). The gain for each frequency is given by the transform, using the method described in Appendix A for relating frequencies to positions in the G array. Like the ideal gains, these calculated gains will generally range from approximately 0.0 (for complete attenuation) to 1.0 (for no attenuation). Gains less than 0.0 indicate frequencies for which the filter actually inverts the input signal (part of the ripple in the stop band; see Figure 6). If the filter has gain Gt at some frequency f, then gain Gf with the digital filter will multiply the amplitude of any periodicity in the time series at frequency f by Gf and the corresponding power by Gf².

The obtained gain function may not be completely satisfactory on the first attempt. If points 1 and 5 may be replaced by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.

A Brief Example

To illustrate the method, we construct a filter to remove frequencies above 45 Hz from EEG data sampled at 200 Hz. A scratch array of length 20 is employed, yielding a frequency resolution of f = 45 Hz. In Step 1, the ideal gain function is computed at 1 and 5 (with the filter width of the time series, 5 points and may be divided by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.

Step 4. Calculating the gain function of the window filter. The gain function (in the frequency domain) for the weights in the windowed filter (in the time domain) may be obtained by calculating the discrete Fourier transform of the weights (see Equations A.1 and A.2). The gain for each frequency is given by the transform, using the method described in Appendix A for relating frequencies to positions in the G array. Like the ideal gains, these calculated gains will generally range from approximately 0.0 (for complete attenuation) to 1.0 (for no attenuation). Gains less than 0.0 indicate frequencies for which the filter actually inverts the input signal (part of the ripple in the stop band; see Figure 6). If the filter has gain Gt at some frequency f, then gain Gf with the digital filter will multiply the amplitude of any periodicity in the time series at frequency f by Gf and the corresponding power by Gf².

The obtained gain function may not be completely satisfactory on the first attempt. If points 1 and 5 may be replaced by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.

A Brief Example

To illustrate the method, we construct a filter to remove frequencies above 45 Hz from EEG data sampled at 200 Hz. A scratch array of length 20 is employed, yielding a frequency resolution of f = 45 Hz. In Step 1, the ideal gain function is computed at 1 and 5 (with the filter width of the time series, 5 points and may be divided by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.

Step 4. Calculating the gain function of the window filter. The gain function (in the frequency domain) for the weights in the windowed filter (in the time domain) may be obtained by calculating the discrete Fourier transform of the weights (see Equations A.1 and A.2). The gain for each frequency is given by the transform, using the method described in Appendix A for relating frequencies to positions in the G array. Like the ideal gains, these calculated gains will generally range from approximately 0.0 (for complete attenuation) to 1.0 (for no attenuation). Gains less than 0.0 indicate frequencies for which the filter actually inverts the input signal (part of the ripple in the stop band; see Figure 6). If the filter has gain Gt at some frequency f, then gain Gf with the digital filter will multiply the amplitude of any periodicity in the time series at frequency f by Gf and the corresponding power by Gf².

The obtained gain function may not be completely satisfactory on the first attempt. If points 1 and 5 may be replaced by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.

A Brief Example

To illustrate the method, we construct a filter to remove frequencies above 45 Hz from EEG data sampled at 200 Hz. A scratch array of length 20 is employed, yielding a frequency resolution of f = 45 Hz. In Step 1, the ideal gain function is computed at 1 and 5 (with the filter width of the time series, 5 points and may be divided by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.

A Brief Example

To illustrate the method, we construct a filter to remove frequencies above 45 Hz from EEG data sampled at 200 Hz. A scratch array of length 20 is employed, yielding a frequency resolution of f = 45 Hz. In Step 1, the ideal gain function is computed at 1 and 5 (with the filter width of the time series, 5 points and may be divided by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.

A Brief Example

To illustrate the method, we construct a filter to remove frequencies above 45 Hz from EEG data sampled at 200 Hz. A scratch array of length 20 is employed, yielding a frequency resolution of f = 45 Hz. In Step 1, the ideal gain function is computed at 1 and 5 (with the filter width of the time series, 5 points and may be divided by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.

A Brief Example

To illustrate the method, we construct a filter to remove frequencies above 45 Hz from EEG data sampled at 200 Hz. A scratch array of length 20 is employed, yielding a frequency resolution of f = 45 Hz. In Step 1, the ideal gain function is computed at 1 and 5 (with the filter width of the time series, 5 points and may be divided by a different window width and/or tapering function until a satisfactory filter is obtained. As noted above, the final set of weights should be divided by m prior to use.